

EDITAL FAIFSul Nº 37/2022

SELEÇÃO DE ALUNOS PARA O CURSO DE QUALIFICAÇÃO PROFISSIONAL DE ELETRICISTA DE SISTEMAS DE ENERGIAS RENOVÁVEIS

A FUNDAÇÃO ÊNNIO DE JESUS PINHEIRO AMARAL DE APOIO AO INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA SUL-RIO-GRANDENSE torna pública o edital de seleção de ALUNOS, para ingressar no curso de Qualifi cação profi ssional de Eletricista de Sistemas de Energias Renováveis, pela Linha de Fomento da Bolsa Formação - Qualifi ca Mais EnergIF, no âmbito da Secretaria de Educação Profi ssional e Tecnológica do Ministério da Educação (Setec/MEC), para atuar junto às coordenações locais dos câmpus ofertantes, conforme TED 10702, para o público-alvo defi nido no art. 2º da Lei nº 12.513, de 26 de outubro de 2011, com 18 anos ou mais de idade, e com Ensino Fundamental I (1º a 5º ano) - completo, conforme segue:

1. DAS DISPOSIÇÕES PRELIMINARES

- 1.1. O processo seletivo será regido por este Edital.
- 1.2. Ao efetivar a inscrição, o(a) candidato(a) declara estar ciente do conteúdo deste Edital e acata na íntegra as suas disposições.
- 1.3. Não é permitido o acúmulo de bolsas para candidatos já participantes de programas de fomento a estudo e pesquisa do governo federal (UAB, e-Tec, PARFOR, SECAD), com bolsas do Fundo Nacional de Desenvolvimento da Educação (FNDE) ou bolsas da instituição financiadas por esforço próprio. Os candidatos deverão estar atentos para evitar a sobreposição de períodos de vinculação entre os programas.
- 1.4. O aluno receberá um auxílio de R\$2,00/hora-aula totalizando R\$ 40,00 semanais, para custeio com transporte e alimentação.
- 1.5. O cancelamento do curso implicará automaticamente no cancelamento deste Edital.
- 1.6. Dúvidas e informações poderão ser encaminhadas para o e-mail: <u>if-energif@ifsul.edu.br</u>.

2. DAS VAGAS

- 2.1. O processo seletivo destina-se ao preenchimento de 20 (vinte) vagas para a função de ALUNO e formação de cadastro de reserva no IFSul Câmpus Venâncio Aires, para atender às necessidades de discência nas vagas a serem ofertadas no Curso de Qualificação profissional de Eletricista de Sistemas de Energias Renováveis, pela Linha de Fomento da Bolsa Formação Qualifica Mais Energif.
- 2.2. As ementas e os conteúdos específicos das disciplinas são apresentados no Anexo I;
- 2.3. As aulas serão realizadas de terças à sextas-feiras, iniciando as 19:00 horas e finalizando às 23:00 horas. As aulas aos sábados iniciarão às 08:00 horas e finalizarão às 12:00 horas. Eventualmente e, de acordo com o planejamento do curso, poderão ser agendadas atividades no período da tarde do sábado, no horário compreendido das 13:30 horas até 17:30 horas.
- 2.4. O curso terá uma duração de 10 semanas e será desenvolvido de forma modular, isto é, o aluno deverá obter aproveitamento mínimo de 60% (sessenta por cento) e frequência maior ou igual a 75% (setenta e cinco por cento) ao término de cada módulo para garantir sua progressão no curso.
- 2.5. Não haverá recuperação de conteúdos ou avaliações destinadas à recuperação de notas em períodos posteriores à oferta do módulo. O aluno que não obter os requisitos definidos no item 2.4. não poderá cursar os módulos subsequentes, com pré-requisitos, e será considerado reprovado no curso.
- 2.6. Ao final do curso, o aluno receberá o Certificado de Qualificação Profissional em ELETRICISTA DE SISTEMAS DE ENERGIAS RENOVÁVEIS, juntamente com os Certificados de NR-10 e NR-35.

- 2.7. Serão selecionados(as) candidatos(as) em número igual ao de vagas ofertadas, observando-se a estrita ordem de classificação.
- 2.8. Demais candidatos(as) classificados(as) irão compor cadastro de reserva e poderão ser chamados(as) conforme haja oferta de novas turmas do curso.

3. DAS INSCRIÇÕES E SELEÇÃO

QUADRO I – DATAS					
Publicação do Edital	29/04/2022				
Impugnação do Edital	02/05/2022				
Inscrições	03/05/2022 - 13/05/2022				
Homologação das Inscrições	14/05/2022				
Prazo de recurso da homologação das inscrições	15/05/2022-16/05/2022				
Resposta aos Recursos	17/05/2022				
Sorteio das Vagas	18/05/2022				
Homologação do resultado final	19/05/2022				
Início das aulas	24/05/2022				

- 3.1. Serão deferidas as inscrições para os(as) candidatos(as) que cumpram todas as condições gerais e específicas descritas abaixo:
 - 3.1.1. Ter 18 anos ou mais de idade;
 - 3.1.2. Estar com no minímo o 5º ano do ensino Fundamental Completo.
 - 3.1.3. As inscrições serão recebidas no campus Venâncio Aires, localizado na Avenida das Indústrias, 1865 Bairro Universitário Venâncio Aires/RS das 08h e 00min às 22h e 30min, na recepção, ou através do link: https://forms.gle/MMjMBOC3P7moimos6
 - 3.1.4. A ficha de inscrição estará disponibilizada no Anexo II deste edital ou no Campus Venâncio Aires, a partir do dia 28/04/2022 na recepção do campus.
 - 3.1.5. Só serão consideradas as inscrições recebidas até às 22h e 30 min do dia 06/05/2022, último dia de inscrições, com a seguinte documentação em anexo:
 - 3.1.5.1. Ficha de inscrição preenchida;
 - 3.1.5.2. Cópia da cédula de identidade RG;
 - 3.1.5.3. Cópia do cadastro de pessoa física CPF;
 - 3.1.5.4. Histórico Escolar ou comprovante de conclusão do 5º ano do Ensino Fundamental.
 - 3.1.5.5. Comprovante conta bancária.
- 3.2. Não será homologada a inscrição do(a) candidato(a) que não apresentar a documentações exigidas nos itens 3.1.5.1., 3.1.5.2., 3.1.5.3. e 3.1.5.4.
- 3.3. Os recursos, a este edital, deverão ser enviados, exclusivamente, para o endereço eletrônico:<u>if-energif@ifsul.edu.br</u>.
- 3.4. A seleção será realizada através de sorteio na data indicada no QUADRO I.
- 3.5. Caso não haja candidatos(as) habilitados(as) para o total de vagas, será aberta nova seleção para preenchimento das vagas.
- 3.6. O aluno para recebimento da bolsa deverá ter conta bancária. Conta digital não será aceita.

4. DA DIVULGAÇÃO DOS RESULTADOS

4.1. A divulgação dos resultados finais será realizada na página oficial da FAIFSul http://www.ifsul.edu.br/fundacoes

Б	$D\Delta$	V/ A T	$ID\Delta I$	DE DO	PRO	CESSO	SELETIVO
Э.	I J A	v A I	лтэат	フローレスト	PKU	ル・こうさい	SELE LIVO

5.1. O processo seletivo simplificado será válido por 08 (oito) meses a contar da data da homologação do resultado final, prorrogável por igual período, a critério da Instituição.

6. DISPOSIÇÕES GERAIS

- 6.1. Eventuais mudanças neste edital serão realizadas através de editais de retificação ou editais complementares.
- 6.2. Não serão aceitas inscrições que forem entregues fora do prazo.
- 6.3. Casos omissos serão julgados pela Comissão de Seleção deste Edital.

	Passo Fundo, 28 de abril de 2022.		
Dreifus Costa Coordenador Geral do Projeto	Osmar Renato Brito Furtado Presidente da FAIFSul		

EDITAL No. 37/2022 SELEÇÃO DE ALUNOS ANEXO I – EMENTAS E CONTEÚDOS PROGRAMÁTICOS:

INSTITUTO FEDERAL

DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA
Sul-rio-grandense

MÓDULO

BÁSICO

1. IDENTIFICAÇÃO

Curso: Eletricista de Sistemas de Energias Renováveis

Componente Curricular: Eletricidade básica aplicada a Sistemas Fotovoltaicos

Número de Aulas 30 Total de Horas 30

2. EMENTA

Carga e matéria; Força elétrica; campo elétrico; Potencial elétrico; Diferença de Potencial Elétrico; Condutores e isolantes; Resistência e resistividade; Circuito Elétrico.

3. OBJETIVOS

Fazer com que o aluno(a) compreenda os mecanismos gerais de eletrostática e eletrodinâmica, com base nas leis de corrente, potência e resistência elétrica presentes, além de suas grandezas.

- Conhecimentos básicos sobre a eletrostática e eletrodinâmica e as principais grandezas elétricas:
- Conceitos básicos sobre eletrostática e eletrodinâmica (estrutura do Átomo, Carga e matéria;
- o Força elétrica e Lei de Coulomb;
- Conceito de campo elétrico;
- o Potencial elétrico;
- Diferença de Potencial Elétrico;
- o Conceito de corrente elétrica;
- o Condutores e isolantes; Resistência e resistividade; circuito Elétrico).
- Compreender os conceitos e realizar cálculos aplicando as leis de Ohm e de Kirchhoff:
- O Conceitos básicos sobre as leis do Ohm e Kirchhoff.
- Compreender os conceitos e realizar cálculos de potência e energia elétrica;
- o Conceitos básicos sobre Potência Elétrica e energia.
- Compreender conceitos sobre circuitos elétricos de corrente contínua e corrente alternada:
- O Conceitos básicos de circuitos elétricos de corrente elétrica contínua e alternada;
- O Circuitos elétricos monofásicos e trifásicos (parâmetros elétricos como: tensão elétrica, corrente elétrica, potência elétrica).
- Conhecer e utilizar corretamente os instrumentos de medição das grandezas elétricas:
- o Manuseio de instrumentos de medição das grandezas elétricas (voltímetro, amperímetro, wattímetro, megômetro).
- Conceitos sobre instalações elétricas prediais/residenciais e sistemas de aterramento aplicados a sistemas fotovoltaicos:
- O Leitura e interpretação de desenhos técnicos.

A metodologia de ensino buscará articular os saberes práticos e acadêmicos em uma relação de complementaridade. Sendo valorizados os conhecimentos prévios dos discentes, bem como seus diferentes ritmos de aprendizagem. Além disso, devem ser observados os princípios de autonomia, interação e cooperação. Deste modo, as aulas poderão ser expositivas e dialogadas, através de estudos de caso, seminários, debates, atividades em grupo, atividades individuais, projetos de trabalho, estudos dirigidos, visitas técnicas, oficinas temáticas e outras, através do uso de recursos audiovisuais, apostilas e materiais de apoio, priorizando o uso de metodologias ativas e inovadoras, que proporcionem o protagonismo do(a) estudante, sempre na perspectiva de construção do conhecimento, mediante a valorização dos saberes profissionais. Faz-se necessário ressaltar que os aportes teóricos trabalhados em aula devem obrigatoriamente "fazer sentido" na realidade em questão.

6. AVALIAÇÃO DA APRENDIZAGEM

Os alunos serão avaliados em 100 (cem) pontos em cada disciplina:

- Frequência e participação Total de 25 pontos.
- Avaliação individual (prática ou teórica) Total de 35 pontos.
- Avaliação em grupo (prática ou teórica) Total de 40 pontos.

7. RECUPERAÇÃO

Para conclusão do curso, os alunos deverão ter aproveitamento mínimo de 60% (sessenta) em todas as disciplinas. Se o aluno não obtiver o rendimento mínimo, deverá realizar a recuperação imediatamente após o fechamento da carga horária da disciplina em questão.

A recuperação será composta de um trabalho (prático ou teórico) no total de 100 pontos.

- BENEDITO, Ricardo da Silva. Caracterização Da Geração Distribuída De Eletricidade Por Meio De Sistemas Fotovoltaicos Conectados À Rede, No Brasil, Sob Os Aspectos Técnicos, Econômico E Regulatório. 2009. 110 f. Dissertação (Mestrado) - Curso de Ciências, Universidade de São Paulo, São Paulo, 2009.
- COELCE. NT 001/2012: Fornecimento de Energia Elétrica em Tensão Secundária de Distribuição. Fortaleza, 2012. 61 p.
- FUSANO, Renato Hideo. Análise Dos Índices De Mérito Do Sistema Fotovoltaico Conectado À Rede Do Escritório Verde Da Utfpr. 2013. 94 f. TCC (Graduação) - Curso de Engenharia Elétrica, Universidade Tecnológica Federal do Paraná, Curitiba, 2013.
- LIMA FILHO, Domingos Leite. Projeto de instalações elétricas prediais. 6. ed. Érica, 2001.

BÁSICO

1. IDENTIFICAÇÃO

Curso: Eletricista de Sistemas de Energias Renováveis

Componente Curricular: Fundamentos da Energia Solar Fotovoltaica.

Número de Aulas 20 Total de Horas 20

2. EMENTA

Fontes renováveis e não renováveis de energia; Estatísticas globais e nacionais; Uso e indicadores energéticos; Legislação vigente; Normas de Concessionárias.

3. OBJETIVOS

Entender o contexto global e nacional da energia elétrica, fazendo com que o aluno(a) entenda os princípios gerais de geração, distribuição e utilização de energia renovável, compreendendo as grandezas e os valores reais energéticos.

- Contexto global e nacional da energia elétrica (geração, distribuição e utilização):
- o Fontes renováveis e não renováveis de energia;
- o Estatísticas globais e nacionais de uso da energia;
- Situação energética brasileira;
- Legislação vigente (RN 482, RN 687, marco legal da GD, PL5829/19, normas de concessionárias locais).
- Compreender a irradiação solar e sua origem:
- o Insolação:
- Irradiação solar;
- Tipos de irradiação solar;
- o Movimento relativo à Terra Sol.
- Compreender as grandezas e os valores da irradiação solar:
- o Grandezas relacionadas com a irradiação solar (tipos);
- Medição das grandezas relacionadas com a irradiação solar (equipamentos e estações solarimétricas);
- Valores típicos da irradiação solar no Brasil;
- o Fontes de dados de valores da irradiação solar.
- Conhecer as formas de aproveitamento da energia solar e sua captação máxima:
- Conversão direta da irradiação solar em calor e em eletricidade (sistemas básicos);
- o Escolha do posicionamento ideal para maximizar a energia captada;
- O Usar corretamente dispositivos auxiliares para caracterização de sistemas solares tais como bússola, trena, inclinômetro.

A metodologia de ensino buscará articular os saberes práticos e acadêmicos em uma relação de complementaridade. Sendo valorizados os conhecimentos prévios dos discentes, bem como seus diferentes ritmos de aprendizagem. Além disso, devem ser observados os princípios de autonomia, interação e cooperação. Deste modo, as aulas poderão ser expositivas e dialogadas, através de estudos de caso, seminários, debates, atividades em grupo, atividades individuais, projetos de trabalho, estudos dirigidos, visitas técnicas, oficinas temáticas e outras, através do uso de recursos audiovisuais, apostilas e materiais de apoio, priorizando o uso de metodologias ativas e inovadoras, que proporcionem o protagonismo do(a) estudante, sempre na perspectiva de construção do conhecimento, mediante a valorização dos saberes profissionais. Faz-se necessário ressaltar que os aportes teóricos trabalhados em aula devem obrigatoriamente "fazer sentido" na realidade em questão.

6. AVALIAÇÃO DA APRENDIZAGEM

Os alunos serão avaliados em 100 (cem) pontos em cada disciplina:

- Frequência e participação Total de 25 pontos.
- Avaliação individual (prática ou teórica) Total de 35 pontos.
- Avaliação em grupo (prática ou teórica) Total de 40 pontos.

7. RECUPERAÇÃO

Para conclusão do curso, os alunos deverão ter aproveitamento mínimo de 60% (sessenta) em todas as disciplinas. Se o aluno não obtiver o rendimento mínimo, deverá realizar a recuperação imediatamente após o fechamento da carga horária da disciplina em questão.

A recuperação será composta de um trabalho (prático ou teórico) no total de 100 pontos.

- BENEDITO, Ricardo da Silva. Caracterização Da Geração Distribuída De Eletricidade Por Meio De Sistemas Fotovoltaicos Conectados À Rede, No Brasil, Sob Os Aspectos Técnicos, Econômico E Regulatório. 2009. 110 f. Dissertação (Mestrado) - Curso de Ciências, Universidade de São Paulo, São Paulo, 2009.
- COELCE. NT 001/2012: Fornecimento de Energia Elétrica em Tensão Secundária de Distribuição. Fortaleza, 2012. 61 p.
- FUSANO, Renato Hideo. Análise Dos Índices De Mérito Do Sistema Fotovoltaico Conectado À Rede do Escritório Verde da UTFPR. 2013. 94 f. TCC (Graduação) - Curso de Engenharia Elétrica, Universidade Tecnológica Federal do Paraná, Curitiba, 2013.
- LIMA FILHO, Domingos Leite. Projeto de instalações elétricas prediais. 6. ed. Érica, 2001.
- NISKIER, Júlio. MACINTYRE, A.J. Instalações Elétricas. 5. ed. Rio de Janeiro: LTC, 2008.

ESPECÍFICO

1. IDENTIFICAÇÃO

Curso: Eletricista de Sistemas de Energias Renováveis

Componente Curricular: Tecnologia Fotovoltaica: módulos, Arranjos, Célula.

Número de Aulas 16 Total de Horas 16

2. EMENTA

Efeito Fotovoltaico; células energéticas; módulos fotovoltaicos; parâmetros e arranjos energéticos.

3. OBJETIVOS

Realizar o estudo, em caráter geral, dos institutos gerais do sistema fotovoltaico e seus componentes, propiciando ao aluno(a) uma visão teórico-prática do sistema energético, construindo e estimulando a reflexão e o debate crítico acerca dos temas.

- Compreender o efeito fotovoltaico:
- O Conceitos básicos relacionados ao efeito fotovoltaico.
- Compreender as características das células fotovoltaicas:
- Estudo sobre tipos, produção e aspectos construtivos dos diversos tipos de células fotovoltaicas e seus princípios teóricos;
- o Interpretação da curva I x V de uma célula fotovoltaica.
- Conhecer as características e os componentes de diferentes tipos de módulos fotovoltaicos:
- Processo de construção de um módulo fotovoltaico;
- O Características técnicas, componentes e parâmetros de funcionamento dos principais tipos de módulos fotovoltaicos.
- o Fatores que afetam a eficiência de um módulo fotovoltaico;
- Identificar as características e os parâmetros relacionados aos arranjos fotovoltaicos:
- Estudo sobre arranjos em série e em paralelo das células fotovoltaicas;
- Utilização de diodos de desvio e de fileira;
- o Caixa de ligações;
- Efeito das condições ambientes e locais (temperatura, sombreamento) sobre módulos e arranjos fotovoltaicos.

A metodologia de ensino buscará articular os saberes práticos e acadêmicos em uma relação de complementaridade. Sendo valorizados os conhecimentos prévios dos discentes, bem como seus diferentes ritmos de aprendizagem. Além disso, devem ser observados os princípios de autonomia, interação e cooperação. Deste modo, as aulas poderão ser expositivas e dialogadas, através de estudos de caso, seminários, debates, atividades em grupo, atividades individuais, projetos de trabalho, estudos dirigidos, visitas técnicas, oficinas temáticas e outras, através do uso de recursos audiovisuais, apostilas e materiais de apoio, priorizando o uso de metodologias ativas e inovadoras, que proporcionem o protagonismo do(a) estudante, sempre na perspectiva de construção do conhecimento, mediante a valorização dos saberes profissionais. Faz-se necessário ressaltar que os aportes teóricos trabalhados em aula devem obrigatoriamente "fazer sentido" na realidade em questão.

6. AVALIAÇÃO DA APRENDIZAGEM

Os alunos serão avaliados em 100 (cem) pontos em cada disciplina:

- Frequência e participação Total de 25 pontos.
- Avaliação individual (prática ou teórica) Total de 35 pontos.
- Avaliação em grupo (prática ou teórica) Total de 40 pontos.

7. RECUPERAÇÃO

Para conclusão do curso, os alunos deverão ter aproveitamento mínimo de 60% (sessenta) em todas as disciplinas. Se o aluno não obtiver o rendimento mínimo, deverá realizar a recuperação imediatamente após o fechamento da carga horária da disciplina em questão.

A recuperação será composta de um trabalho (prático ou teórico) no total de 100 pontos.

- BENEDITO, Ricardo da Silva. Caracterização Da Geração Distribuída De Eletricidade Por Meio De Sistemas Fotovoltaicos Conectados À Rede, No Brasil, Sob Os Aspectos Técnicos, Econômico E Regulatório. 2009. 110 f. Dissertação (Mestrado) - Curso de Ciências, Universidade de São Paulo, São Paulo, 2009.
- COELCE. NT 001/2012: Fornecimento de Energia Elétrica em Tensão Secundária de Distribuição. Fortaleza, 2012. 61 p.
- FUSANO, Renato Hideo. Análise Dos Índices De Mérito Do Sistema Fotovoltaico Conectado À Rede do Escritório Verde da UTFPR. 2013. 94 f. TCC (Graduação) Curso de Engenharia Elétrica, Universidade Tecnológica Federal do Paraná, Curitiba, 2013.
- LIMA FILHO, Domingos Leite. Projeto de instalações elétricas prediais. 6. ed. Érica, 2001.
- NISKIER, Júlio. MACINTYRE, A.J. Instalações Elétricas. 5. ed. Rio de Janeiro: LTC, 2008.

ESPECÍFICO

1. IDENTIFICAÇÃO

Curso: Eletricista de Sistemas de Energias Renováveis

Componente Curricular: Tecnologia Fotovoltaica: módulos, Arranjos, Célula.

Número de Aulas 16 Total de Horas 16

2. EMENTA

Efeito Fotovoltaico; células energéticas; módulos fotovoltaicos; parâmetros e arranjos energéticos.

3. OBJETIVOS

Realizar o estudo, em caráter geral, dos institutos gerais do sistema fotovoltaico e seus componentes, propiciando ao aluno(a) uma visão teórico-prática do sistema energético, construindo e estimulando a reflexão e o debate crítico acerca dos temas.

- Compreender o efeito fotovoltaico:
- O Conceitos básicos relacionados ao efeito fotovoltaico.
- Compreender as características das células fotovoltaicas:
- Estudo sobre tipos, produção e aspectos construtivos dos diversos tipos de células fotovoltaicas e seus princípios teóricos;
- o Interpretação da curva I x V de uma célula fotovoltaica.
- Conhecer as características e os componentes de diferentes tipos de módulos fotovoltaicos:
- Processo de construção de um módulo fotovoltaico;
- O Características técnicas, componentes e parâmetros de funcionamento dos principais tipos de módulos fotovoltaicos.
- o Fatores que afetam a eficiência de um módulo fotovoltaico;
- Identificar as características e os parâmetros relacionados aos arranjos fotovoltaicos:
- Estudo sobre arranjos em série e em paralelo das células fotovoltaicas;
- Utilização de diodos de desvio e de fileira;
- o Caixa de ligações;
- Efeito das condições ambientes e locais (temperatura, sombreamento) sobre módulos e arranjos fotovoltaicos.

A metodologia de ensino buscará articular os saberes práticos e acadêmicos em uma relação de complementaridade. Sendo valorizados os conhecimentos prévios dos discentes, bem como seus diferentes ritmos de aprendizagem. Além disso, devem ser observados os princípios de autonomia, interação e cooperação. Deste modo, as aulas poderão ser expositivas e dialogadas, através de estudos de caso, seminários, debates, atividades em grupo, atividades individuais, projetos de trabalho, estudos dirigidos, visitas técnicas, oficinas temáticas e outras, através do uso de recursos audiovisuais, apostilas e materiais de apoio, priorizando o uso de metodologias ativas e inovadoras, que proporcionem o protagonismo do(a) estudante, sempre na perspectiva de construção do conhecimento, mediante a valorização dos saberes profissionais. Faz-se necessário ressaltar que os aportes teóricos trabalhados em aula devem obrigatoriamente "fazer sentido" na realidade em questão.

6. AVALIAÇÃO DA APRENDIZAGEM

Os alunos serão avaliados em 100 (cem) pontos em cada disciplina:

- Frequência e participação Total de 25 pontos.
- Avaliação individual (prática ou teórica) Total de 35 pontos.
- Avaliação em grupo (prática ou teórica) Total de 40 pontos.

7. RECUPERAÇÃO

Para conclusão do curso, os alunos deverão ter aproveitamento mínimo de 60% (sessenta) em todas as disciplinas. Se o aluno não obtiver o rendimento mínimo, deverá realizar a recuperação imediatamente após o fechamento da carga horária da disciplina em questão.

A recuperação será composta de um trabalho (prático ou teórico) no total de 100 pontos.

- BENEDITO, Ricardo da Silva. Caracterização Da Geração Distribuída De Eletricidade Por Meio De Sistemas Fotovoltaicos Conectados À Rede, No Brasil, Sob Os Aspectos Técnicos, Econômico E Regulatório. 2009. 110 f. Dissertação (Mestrado) - Curso de Ciências, Universidade de São Paulo, São Paulo, 2009.
- COELCE. NT 001/2012: Fornecimento de Energia Elétrica em Tensão Secundária de Distribuição. Fortaleza, 2012. 61 p.
- FUSANO, Renato Hideo. Análise Dos Índices De Mérito Do Sistema Fotovoltaico Conectado À Rede do Escritório Verde da UTFPR. 2013. 94 f. TCC (Graduação) - Curso de Engenharia Elétrica, Universidade Tecnológica Federal do Paraná, Curitiba, 2013.
- LIMA FILHO, Domingos Leite. Projeto de instalações elétricas prediais. 6. ed. Érica, 2001.
- NISKIER, Júlio. MACINTYRE, A.J. Instalações Elétricas. 5. ed. Rio de Janeiro: LTC, 2008.

ESPECÍFICO

1. IDENTIFICAÇÃO

Curso: Eletricista de Sistemas de Energias Renováveis

Componente Curricular: Sistemas Fotovoltaicos: Isolados, conectados à rede, Híbridos, Bombeamento de água.

Número de Aulas 20 Total de Horas

2. EMENTA

Equipamentos fotovoltaicos; instalação elétrica; tipos de redes; normas relacionadas a sistemas fotovoltaicos.

3. OBJETIVOS

Propor aos alunos(as) a realizarem atividades focadas em sistemas fotovoltaicos, trabalhando ferramentas de medição, confecção, avaliação e distribuição de energia em rede, com base nas normas específicas do setor elétrico.

4. CONTEÚDO PROGRAMÁTICO

- Conhecer os sistemas fotovoltaicos isolados:
- Características dos equipamentos e componentes utilizados em sistemas fotovoltaicos isolados;
- Medição de parâmetros em sistemas fotovoltaicos isolados;
- Normas relacionadas com os sistemas fotovoltaicos isolados;
- O Instalação elétrica (quadro elétrico, cabeamento, proteções contra descargas atmosféricas, disjuntores, fusíveis e outros elementos do circuito elétrico) relacionada com a aplicação.
- Conhecer os sistemas fotovoltaicos conectados à rede:
- Características dos equipamentos e componentes utilizados em sistemas fotovoltaicos conectados à rede:
- o Medição de parâmetros em sistemas fotovoltaicos conectados à rede;
- O Normas relacionadas com os sistemas fotovoltaicos conectados à rede;
- o Instalação elétrica (quadro elétrico, cabeamento, proteções contra descargas atmosféricas, disjuntores, fusíveis e outros elementos do circuito elétrico) relacionada com a aplicação.
- Conhecer outras aplicações dos sistemas fotovoltaicos:
- O Características dos equipamentos e componentes utilizados em sistemas fotovoltaicos de bombeamento de água;
- Características dos equipamentos e componentes utilizados em sistemas fotovoltaicos de iluminação;
- Características dos equipamentos e componentes utilizados em sistemas fotovoltaicos híbridos;
- Normas relacionadas com outras aplicações dos sistemas fotovoltaicos;
- O Instalação elétrica (quadro elétrico, cabeamento, proteções contra descargas atmosféricas, disjuntores, fusíveis e outros elementos do circuito elétrico) relacionada com a aplicação.

6. AVALIAÇÃO DA APRENDIZAGEM

Os alunos serão avaliados em 100 (cem) pontos em cada disciplina:

- Frequência e participação Total de 25 pontos.
- Avaliação individual (prática ou teórica) Total de 35 pontos.
- Avaliação em grupo (prática ou teórica) Total de 40 pontos.

A metodologia de ensino buscará articular os saberes práticos e acadêmicos em uma relação de complementaridade. Sendo valorizados os conhecimentos prévios dos discentes, bem como seus diferentes ritmos de aprendizagem. Além disso, devem ser observados os princípios de autonomia, interação e cooperação. Deste modo, as aulas poderão ser expositivas e dialogadas, através de estudos de caso, seminários, debates, atividades em grupo, atividades individuais, projetos de trabalho, estudos dirigidos, visitas técnicas, oficinas temáticas e outras, através do uso de recursos audiovisuais, apostilas e materiais de apoio, priorizando o uso de metodologias ativas e inovadoras, que proporcionem o protagonismo do(a) estudante, sempre na perspectiva de construção do conhecimento, mediante a valorização dos saberes profissionais. Faz-se necessário ressaltar que os aportes teóricos trabalhados em aula devem obrigatoriamente "fazer sentido" na realidade em questão.

7. RECUPERAÇÃO

Para conclusão do curso, os alunos deverão ter aproveitamento mínimo de 60% (sessenta) em todas as disciplinas. Se o aluno não obtiver o rendimento mínimo, deverá realizar a recuperação imediatamente após o fechamento da carga horária da disciplina em questão.

A recuperação será composta de um trabalho (prático ou teórico) no total de 100 pontos.

- BENEDITO, Ricardo da Silva. Caracterização Da Geração Distribuída De Eletricidade Por Meio De Sistemas Fotovoltaicos Conectados À Rede, No Brasil, Sob Os Aspectos Técnicos, Econômico E Regulatório. 2009. 110 f. Dissertação (Mestrado) - Curso de Ciências, Universidade de São Paulo, São Paulo, 2009.
- COELCE. NT 001/2012: Fornecimento de Energia Elétrica em Tensão Secundária de Distribuição. Fortaleza, 2012. 61 p.
- FUSANO, Renato Hideo. Análise Dos Índices De Mérito Do Sistema Fotovoltaico Conectado À Rede do Escritório Verde da UTFPR. 2013. 94 f. TCC (Graduação) - Curso de Engenharia Elétrica, Universidade Tecnológica Federal do Paraná, Curitiba, 2013.
- LIMA FILHO, Domingos Leite. Projeto de instalações elétricas prediais. 6. ed. Érica, 2001.
- NISKIER, Júlio. MACINTYRE, A.J. Instalações Elétricas. 5. ed. Rio de Janeiro: LTC, 2008.
- PINHO, J. T., GALDINO, M. A. Manual de Engenharia para Sistemas Fotovoltaicos. Rio de Janeiro: CEPEL – CRESESB, 2014.

ESPECÍFICO

1. IDENTIFICAÇÃO

Curso: Eletricista de Sistemas de Energias Renováveis

Componente Curricular: Medidas de Segurança do Trabalho aplicadas ao Setor Fotovoltaico – NR 35.

Número de Aulas 8 Total de Horas

2. EMENTA

Riscos na Instalação de Trabalho em Altura; EPI's; EPC's e Primeiros Socorros.

3. OBJETIVOS

Realizar o estudo, em caráter geral, dos requisitos mínimos e das medidas de proteção para o trabalho em altura, compreendendo o planejamento, a organização e a execução. Desta forma, é proporcionado ao aluno (a) uma capacitação mínima de sua aplicação e segurança na aplicação e condução do trabalho em altura executado nas atividades inerentes a capacitação de instalador de sistemas fotovoltaicos.

4. CONTEÚDO PROGRAMÁTICO

- Normas e regulamentos aplicáveis ao trabalho em altura;
- Análise de Risco e condições impeditivas;
- Riscos potenciais inerentes ao trabalho em altura e medidas de prevenção e controle;
- Sistemas, equipamentos e procedimentos de proteção coletiva;
- Equipamentos de Proteção Individual para trabalho em altura: seleção, inspeção, conservação e limitação de uso;
- Acidentes típicos em trabalhos em altura;
- Condutas em situações de emergência, incluindo noções de técnicas de resgate e de primeiros socorros.

5. METODOLOGIAS

A metodologia de ensino buscará articular os saberes práticos e acadêmicos em uma relação de complementaridade. Sendo valorizados os conhecimentos prévios dos discentes, bem como seus diferentes ritmos de aprendizagem. Além disso, devem ser observados os princípios de autonomia, interação e cooperação. Deste modo, as aulas poderão ser expositivas e dialogadas, através de estudos de caso, seminários, debates, atividades em grupo, atividades individuais, projetos de trabalho, estudos dirigidos, visitas técnicas, oficinas temáticas e outras, através do uso de recursos audiovisuais, apostilas e materiais de apoio, priorizando o uso de metodologias ativas e inovadoras, que proporcionem o protagonismo do(a) estudante, sempre na perspectiva de construção do conhecimento, mediante a valorização dos saberes profissionais. Faz-se necessário ressaltar que os aportes teóricos trabalhados em aula devem obrigatoriamente "fazer sentido" na realidade em questão.

6. AVALIAÇÃO DA APRENDIZAGEM

Os alunos serão avaliados em 100 (cem) pontos em cada disciplina:

- Frequência e participação Total de 25 pontos.
- Avaliação individual (prática ou teórica) Total de 35 pontos. Avaliação em grupo (prática ou teórica) Total de 40 pontos.

RECUPERAÇÃO

Para conclusão do curso, os alunos deverão ter aproveitamento mínimo de 60% (sessenta) em todas as disciplinas. Se o aluno não obtiver o rendimento mínimo, deverá realizar a recuperação imediatamente após o fechamento da carga horária da disciplina em questão.

A recuperação será composta de um trabalho (prático ou teórico) no total de 100 pontos.

- FUSANO, Renato Hideo. Análise Dos Índices De Mérito Do Sistema Fotovoltaico Conectado À Rede Do Escritório Verde Da Utfpr. 2013. 94 f. TCC (Graduação) - Curso de Engenharia Elétrica, Universidade Tecnológica Federal do Paraná, Curitiba, 2013.
- Fraidenraich, N.; Lyra, F. Energia Solar. Fundamentos e Tecnologias de Conversão Heliotermoelétrica e Fotovoltaica. Ed. Universitária da UFPE.1995;
- INBEP http://blog.inbep.com.br/equipamento-de-protecao-individual-epi/;
- NISKIER, Julio. MACINTYRE, A.J. Instalações Elétricas. 5. ed. Rio de Janeiro: LTC, 2008;
- SARAIVA, Editora. Segurança e Medicina do Trabalho. São Paulo: Edição 2009 Atualizada.
- Brasil. MT. DSST. (2018). Manual de auxílio na interpretação e aplicação da norma regulamentadora n.º 35 -Trabalho em altura (p. 90). https://enit.trabalho.gov.br/portal/images/Arquivos SST/SST Publicacao e Manual/CGN OR---MANUAL-CONSOLIDADE-DA-NR-35.pdf

ESPECÍFICO

1. IDENTIFICAÇÃO

Curso: Eletricista de Sistemas de Energias Renováveis

Componente Curricular: Medidas de Segurança do Trabalho aplicadas ao Setor Fotovoltaico – NR 10.

Número de Aulas 40 Total de Horas 40

2. EMENTA

Riscos na Instalação e serviço com eletricidade; EPI's; EPC's; NR10; Primeiros Socorros, Prevenção Incêndios.

3. OBJETIVOS

Realizar o estudo, em caráter geral, dos requisitos mínimos e das medidas de proteção para o trabalho que interajam em instalações elétricas e serviços com eletricidade, compreendendo o planejamento, a organização e a execução. Desta forma, é proporcionado ao aluno (a) uma capacitação mínima de sua aplicação e segurança na aplicação e condução do trabalho em serviços com eletricidade executado as atividades inerentes a capacitação de instalador de sistemas fotovoltaicos.

- Introdução à segurança com eletricidade.
- Riscos em instalações e serviços com eletricidade:
- O choque elétrico, mecanismos e efeitos;
- Arcos elétricos; queimaduras e quedas;
- Campos eletromagnéticos.
- Técnicas de Análise de Risco.
- Medidas de Controle do Risco Elétrico:
- o Desenergização.
- O Aterramento funcional (TN / TT / IT); de proteção; temporário;
- Equipotencialização;
- O Seccionamento automático da alimentação;
- O Dispositivos a corrente de fuga;
- Extra baixa tensão;
- Barreiras e invólucros;
- Bloqueios e impedimentos;
- Obstáculos e anteparos;
- o Isolamento das partes vivas;
- Isolação dupla ou reforçada;Colocação fora de alcance;
- Separação elétrica.
- Normas Técnicas Brasileiras NBR da ABNT: NBR-5410, NBR 14039 e outras;
- Regulamentações do MTE:
- NRs.
- o NR-10 (Segurança em Instalações e Serviços com Eletricidade);
- Qualificação; habilitação; capacitação e autorização.
- Equipamentos de proteção coletiva.
- Equipamentos de proteção individual.
- Rotinas de trabalho Procedimentos:

- o Instalações desenergizadas;
- Liberação para serviços;
- o Sinalização;
- o Inspeções de áreas, serviços, ferramental e equipamento;
- Documentação de instalações elétricas.
- Riscos adicionais:
- o Altura:
- Ambientes confinados:
- Áreas classificadas:
- o Umidade:
- o Condições atmosféricas.
- Proteção e combate a incêndios:
- Noções básicas;
- Medidas preventivas;
- Métodos de extinção;
- o Prática;
- Acidentes de origem elétrica:
- o Causas diretas e indiretas;
- O Discussão de casos:
- Primeiros socorros:
- Noções sobre lesões;
- Priorização do atendimento;
- o Aplicação de respiração artificial;
- Massagem cardíaca;
- O Técnicas para remoção e transporte de acidentados;
- Práticas.
- Responsabilidades.

A metodologia de ensino buscará articular os saberes práticos e acadêmicos em uma relação de complementaridade. Sendo valorizados os conhecimentos prévios dos discentes, bem como seus diferentes ritmos de aprendizagem. Além disso, devem ser observados os princípios de autonomia, interação e cooperação. Deste modo, as aulas poderão ser expositivas e dialogadas, através de estudos de caso, seminários, debates, atividades em grupo, atividades individuais, projetos de trabalho, estudos dirigidos, visitas técnicas, oficinas temáticas e outras, através do uso de recursos audiovisuais, apostilas e materiais de apoio, priorizando o uso de metodologias ativas e inovadoras, que proporcionem o protagonismo do(a) estudante, sempre na perspectiva de construção do conhecimento, mediante a valorização dos saberes profissionais. Faz-se necessário ressaltar que os aportes teóricos trabalhados em aula devem obrigatoriamente "fazer sentido" na realidade em questão.

6. AVALIAÇÃO DA APRENDIZAGEM

Os alunos serão avaliados em 100 (cem) pontos em cada disciplina:

- Frequência e participação Total de 25 pontos.
- Avaliação individual (prática ou teórica) Total de 35 pontos.
- Avaliação em grupo (prática ou teórica) Total de 40 pontos.

7. RECUPERAÇÃO

Para conclusão do curso, os alunos deverão ter aproveitamento mínimo de 60% (sessenta) em todas as disciplinas. Se o aluno não obtiver o rendimento mínimo, deverá realizar a recuperação imediatamente após o fechamento da carga horária da disciplina em questão.

A recuperação será composta de um trabalho (prático ou teórico) no total de 100 pontos.

- FUSANO, Renato Hideo. Análise Dos Índices De Mérito Do Sistema Fotovoltaico Conectado À Rede Do Escritório Verde Da Utfpr. 2013. 94 f. TCC (Graduação) - Curso de Engenharia Elétrica, Universidade Tecnológica Federal do Paraná, Curitiba, 2013.
- Fraidenraich, N.; Lyra,F. Energia Solar. Fundamentos e Tecnologias de Conversão Heliotermoelétrica e Fotovoltaica. Ed. Universitária da UFPE.1995;
- INBEP http://blog.inbep.com.br/equipamento-de-protecao-individual-epi/;
- NISKIER, Julio. MACINTYRE, A.J. Instalações Elétricas. 5. ed. Rio de Janeiro: LTC, 2008;
- SARAIVA, Editora. Segurança e Medicina do Trabalho. São Paulo: Edição 2009 Atualizada.
- Brasil. MT. DSST. (2018). Manual de auxílio na interpretação e aplicação da norma regulamentadora n.º 35 -Trabalho em altura (p. 90). Disponível em: https://enit.trabalho.gov.br/portal/images/Arquivos_SST/SST_Publicacao_e_Manual/CGN OR---MANUAL-CONSOLIDADE-DA-NR-35.pdf
- MTE. (2010). MANUAL DE AUXÍLIO NA INTERPRETAÇÃO E APLICAÇÃO DA NR10 Ministério do Trabalho e Emprego. (Ministério do Trabalho e Emprego, Ed.) (pp. 1–100). São Paulo, SP.

AVANÇADO

1. IDENTIFICAÇÃO

Curso: Eletricista de Sistemas de Energias Renováveis

Componente Curricular: Montagem de Sistemas Fotovoltaicos.

Número de Aulas 50 Total de Horas 50

2. EMENTA

Suporte; Painéis Fotovoltaicos; Instalação; Sistemas Solares; Normas Específicas; Segurança.

3. OBJETIVOS

Realizar o estudo, em caráter geral, das estruturas, painéis solares e suas conexões dos sistemas fotovoltaicos, propiciando a este profissional a leitura exata dos fatores energéticos, medições de grandeza e parâmetros gerais da criação, condução, transporte e armazenamento elétrico.

- Montar estrutura de suporte:
- o Integração de sistemas fotovoltaicos em edificações (BAPV sobreposto e BIPV integrado)
- O Tipos de estruturas de fixação dos painéis e suas aplicações.
- Instalar painéis fotovoltaicos em telhados:
- O Orientações para instalação de painéis fotovoltaicos e suportes metálicos;
- o Apresentação das ferramentas utilizadas para montagem de sistemas fotovoltaicos.
- O Boas práticas de manuseio e montagem de painéis fotovoltaicos.
- Instalar e ativar um sistema solar fotovoltaico conectado à rede:
- Montagem dos dispositivos de proteção, inversores, quadros de distribuição, medidores, com conexão ao gerador fotovoltaico;
- o Realizar a ativação e medições de grandezas do sistema.
- Instalar e ativar outros tipos de sistemas solares fotovoltaicos:
- Montagem dos dispositivos de proteção, inversores e sistemas: de bombeamento solar, híbridos e de iluminação com conexão ao gerador fotovoltaico
- o Realizar a ativação e medições de grandezas do sistema.
- Instalar e ativar um sistema solar fotovoltaico isolado:
- Montagem dos dispositivos de proteção, inversores, banco de baterias, controlador de carga, com conexão ao gerador fotovoltaico
- Realizar a ativação e medições de grandezas do sistema.
- Aplicar normas de instalações de arranjos fotovoltaicos, de instalações elétricas de baixa tensão, SPDA, aterramento e afins:
- Verificação do atendimento às normas aplicáveis.

A metodologia de ensino buscará articular os saberes práticos e acadêmicos em uma relação de complementaridade. Sendo valorizados os conhecimentos prévios dos discentes, bem como seus diferentes ritmos de aprendizagem. Além disso, devem ser observados os princípios de autonomia, interação e cooperação. Deste modo, as aulas poderão ser expositivas e dialogadas, através de estudos de caso, seminários, debates, atividades em grupo, atividades individuais, projetos de trabalho, estudos dirigidos, visitas técnicas, oficinas temáticas e outras, através do uso de recursos audiovisuais, apostilas e materiais de apoio, priorizando o uso de metodologias ativas e inovadoras, que proporcionem o protagonismo do(a) estudante, sempre na perspectiva de construção do conhecimento, mediante a valorização dos saberes profissionais. Faz-se necessário ressaltar que os aportes teóricos trabalhados em aula devem obrigatoriamente "fazer sentido" na realidade em questão.

6. AVALIAÇÃO DA APRENDIZAGEM

Os alunos serão avaliados em 100 (cem) pontos em cada disciplina:

- Frequência e participação Total de 25 pontos.
- Avaliação individual (prática ou teórica) Total de 35 pontos.
- Avaliação em grupo (prática ou teórica) Total de 40 pontos.

7. RECUPERAÇÃO

Para conclusão do curso, os alunos deverão ter aproveitamento mínimo de 60% (sessenta) em todas as disciplinas. Se o aluno não obtiver o rendimento mínimo, deverá realizar a recuperação imediatamente após o fechamento da carga horária da disciplina em questão.

A recuperação será composta de um trabalho (prático ou teórico) no total de 100 pontos.

- FUSANO, Renato Hideo. Análise Dos Índices De Mérito Do Sistema Fotovoltaico Conectado À Rede Do Escritório Verde Da Utfpr. 2013. 94 f. TCC (Graduação) - Curso de Engenharia Elétrica, Universidade Tecnológica Federal do Paraná, Curitiba, 2013.
- Fraidenraich, N.; Lyra,F. Energia Solar. Fundamentos e Tecnologias de Conversão Heliotermoelétrica e Fotovoltaica. Ed. Universitária da UFPE.1995, 471p.
- GRUPO DE TRABALHO DE ENERGIA SOLAR GTES. CEPEL-DTE-CRESESB. Manual de Engenharia para Sistemas Fotovoltaicos. Rio de Janeiro- Março 2014.
- Grupo de Trabalho de Energia Solar fotovoltaica GTEF. Sistemas fotovoltaicos. Manual de Engenharia. 1 ed., junho de 1995.
- KINDERMAN, Geraldo. CAMPAGNOLO, J.M. Aterramento elétrico. 3. ed. Porto Alegre: Sagra-DC Luzzatto,1995.
- LIMA FILHO, Domingos Leite. Projeto de instalações elétricas prediais. 6. ed. Érica, 2001.

AVANÇADO

1. IDENTIFICAÇÃO

Curso: Eletricista de Sistemas de Energias Renováveis

Componente Curricular: Estudo de Viabilidade do Negócio

Número de Aulas 16 Total de Horas 16

2. EMENTA

Globalização; ação empreendedora; Espírito empreendedor; Plano de negócio; Pesquisa de mercado.

3. OBJETIVOS

O aluno(a) será conduzido e preparado para traçar um retrato fiel do mercado, do produto e das atitudes do empreendedor, o que propicia segurança para quem quer iniciar uma empresa com maiores condições de êxito ou mesmo ampliar ou promover inovações em seu negócio.

4. CONTEÚDO PROGRAMÁTICO

TEORIA - 8h

- Conceito Geral de Empreendedorismo:
- Introdução;
- o Globalização e a ação empreendedora;
- Evolução Histórica do empreendedorismo.
- A decisão de empreender;
- Causas da mortalidade dos empreendimentos;
- O empreendedor:
- o Algumas definições;
- Características;
- o Motivação.
- A visão:
- Alguns conceitos.
- A teoria visionária dos empreendedores:
- As categorias de visão;
- O processo de pensar através de uma visão.
- Plano de Negócios e suas etapas:
- As forças e as etapas da criação de um negócio.

PRÁTICA - 8h

- Pesquisa de mercado e seus requisitos;
- Plano Operacional;
- Plano de negócios e suas partes;
- Plano Financeiro:
- Elaboração de orçamentos e contratos para instalação fotovoltaica, payback;
- Estudo de viabilidade (TIR, valor presente líquido).

A metodologia de ensino buscará articular os saberes práticos e acadêmicos em uma relação de complementaridade. Sendo valorizados os conhecimentos prévios dos discentes, bem como seus diferentes ritmos de aprendizagem. Além disso, devem ser observados os princípios de autonomia, interação e cooperação. Deste modo, as aulas poderão ser expositivas e dialogadas, através de estudos de caso, seminários, debates, atividades em grupo, atividades individuais, projetos de trabalho, estudos dirigidos, visitas técnicas, oficinas temáticas e outras, através do uso de recursos audiovisuais, apostilas e materiais de apoio, priorizando o uso de metodologias ativas e inovadoras, que proporcionem o protagonismo do(a) estudante, sempre na perspectiva de construção do conhecimento, mediante a valorização dos saberes profissionais. Faz-se necessário ressaltar que os aportes teóricos trabalhados em aula devem obrigatoriamente "fazer sentido" na realidade em questão.

6. AVALIAÇÃO DA APRENDIZAGEM

Os alunos serão avaliados em 100 (cem) pontos em cada disciplina:

- Frequência e participação Total de 25 pontos.
- Avaliação individual (prática ou teórica) Total de 35 pontos.
- Avaliação em grupo (prática ou teórica) Total de 40 pontos.

7. RECUPERAÇÃO

Para conclusão do curso, os alunos deverão ter aproveitamento mínimo de 60% (sessenta) em todas as disciplinas. Se o aluno não obtiver o rendimento mínimo, deverá realizar a recuperação imediatamente após o fechamento da carga horária da disciplina em questão.

A recuperação será composta de um trabalho (prático ou teórico) no total de 100 pontos.

- COLLINS, James e PORRAS, Jerry. Construindo a visão da empresa. Revista Management, São Paulo, ano 2, n. 7, p. 32-42, mar/abr. 1998.
- CHIVENATO, Idalberto., Planejamento estratégico. Rio de Janeiro: Elsevier, 2009.
- DOLABELA, Fernando. Oficina do empreendedor: a metodologia de ensino que ajuda a transformar conheci- mento em riqueza. 1 ed. São Paulo: Cultura, 1999b.
- FILION, Louis Jaques. Visão e relações: elementos para um meta modelo empreendedor. Revista de administra- ção de empresas, São Paulo, 33(6), p. 50-61, nov/dez. 1993
- MENDONÇA, Márcia Furtado; NOVO, Damáris Vieira; CARVALHO, Rosângela. Gestão e Liderança – Série CADEMP – Publicações FGV Management. 1ª edição. Editora FGV. Rio de Janeiro, 2011.
- SEBRAE. D- Olho na Qualidade 5S para pequenos negócios: manual do participante. Minas Gerais, 2003.

EDITAL No. 37/2022 SELEÇÃO DE ALUNOS ANEXO II – FICHA DE INSCRIÇÃO

DADOS PESSOAIS	
Nome Completo:	
Endereço Residencial:	
Bairro:	CEP:
Data de Nascimento:	CPF:
Telefone Celular:	E-mail: